sergey@colla.lv

Mastercam for SolidWorks – ассоциативная трёхосевая фрезерная обработка внутри CAD-пакета SolidWorks

Сергей Шрейбер (COLLA Ltd.)

В этой статье читатели смогут найти информацию о некоторых возможностях и функциях, которые будут доступны пользователям в первом релизе Mastercam for Solid Works – интегрированного CAM-решения для популярного во всём мире CAD-пакета Solid Works.

Несмотря на то, что приложений для программирования обработки, тесно работающих с Solid Works, имеется немало, компания *CNC Software, Inc.* решила выпустить на рынок своё решение. Бета-тестирование продукта завершается, и это дает нам право бросить первый взгляд на особенности функционала, которым разработчик наделил Mastercam for Solid Works.

Как и следовало ожидать, новое приложение предлагает те современные стратегии и подходы к подготовке и расчету траекторий обработки, которые были добавлены разработчиком в недавно вышедшей версии *CAD/CAM*-системы *Mastercam X3*, о чём мы подробно рассказывали в предыдущих номерах *Observer*'а.

Чтобы лучше понять, как всё это реализовано, предлагаю читателям познакомиться с новым продуктом, так сказать, в действии. В качестве примера будет рассмотрена работа с реальной 3D-моделью детали, которая была спроектирована средствами Solid Works на одном из предприятий Балтии.

Поехали...

После установки приложения и запуска Solid Works 2008 открываем файл .SLDPRT. Как видим, деталь представляет собой корпус с несколькими карманами и большим сквозным отверстием посередине (рис. 1).

Puc. 1

Puc. 2

Находим в главном меню системы строку Mastercam, выбираем описание станка из Machine Selection. После этого активизируем закладку Mastercam, нажимаем кнопку в над деревом построений – на экране появляется Менеджер операций, хорошо знакомый пользователям Mastercam.

Как известно, конструкторы – люди творческие, работают с огоньком, и это замечательно. Однако они далеко не всегда создают модели деталей в пространстве так, чтобы было удобно технологам, и не ставят себе целью избавить последних от её переориентации для подготовки обработки. Чтобы задать необходимое положение, нажимаем кнопку View Manager и выбираем Top plane (рис. 2). Как видим, направление осей рабочей системы координат изменилось.

Для подготовки обработки воспользуемся функцией автоматического создания операций фрезерования – **FBM Mill** (об этом новом подходе к обработке плит и корпусных деталей подробно рассказывалось в предыдущих номерах журнала). Но сначала необходимо определить заготовку в закладке Stock setup – свойства станочной группы (рис. 3). Выбираем All Entities и подтверждаем выбор. Таким образом, мы задали наименьшие размеры заготовки для изготовления данной детали. При этом контуры заготовки отобразятся на экране.

Первый технологический переход

Далее создадим траектории для обработки наружного профиля и выступов. В этом случае для закрепления заготовки на столе станка мы сможем установить прижимы с двух сторон в центральной части детали.

В диалоговом окне *FBM Toolpath* – *Mill* задаем инструмент и параметры обработки, оставляем в списке *Features* необходимые нам для генерации траекторий элементы (рис. 4). После подтверждения параметров и расчета траекто-

рий создаются две операции высокоскоростной обработки – 2D High speed. Полученные траектории – плавные, подходы и отходы закругляются по радиусу, опускание инструмента происходит за пределами заготовки. Именно такие перемещения инструмента нужны

для эффективной обработки деталей на современном высокоскоростном оборудовании. В случае необходимости пользователь может отредактировать параметры созданных операций и пересчитать траектории.

Теперь запрограммируем операции сверления отверстий в боковых выступах с помощью функции **FBM Drill**. Результат показан на рис. 5. Итак, первый технологический шаг обработки детали выполнен.

Второй технологический переход

Для выполнения следующего технологического перехода оператору станка придется закрепить деталь прижимами за наружные выступы. Далее мы займемся операциями обработки карманов и центрального отверстия.

Снова запускаем FBM Mill и оставляем в списке Features zones зоны внутренних карманов. Устанавливаем необходимые параметры, подтверждаем и автоматически получаем готовые траектории фрезы.

Операции сверления, как нетрудно догадаться, мы создадим с помощью функции FBM Drill. Определив отверстия в необходимом нам направлении обработки, нажимаем кнопку в нижней части закладки Features и считываем информацию из SolidWorks Hole Wizard. При этом автоматически распознаются резьбовые отверстия; появляется сообщение об изменении девяти элементов (рис. 6), а в списке мы увидим значок (SolidWorks defined hole). После этого появится запрос (рис. 7) на включение опции предварительного сверления (Pre-drilling), который мы подтверждаем.

Затем в списке *Features* удаляем из обработки четыре отверстия в боковых выступах детали, операции сверления для которых были

SolidWorks feature merge succes 🔀	Warning.
9 features modified per SolidWorks file:	MOI: TAP RH, 2:0-20.0, 25:0 length, 158:0 tp angle, Plot 1:4 An assigned tool requires a pre-drilled hole. Pre-drilling is currently disabled. Enable the Pre-drilling option? Type
Рис. 6	<i>Puc.</i> 7

Puc. 8

созданы при программировании первого технологического установа. Диалоговые окна функций *FBM Mill* и *FBM Drill* с перечнем обрабатываемых элементов показаны на рис. 8, 9. После подтверждения параметров система производит расчет траекторий, и мы получаем пять готовых фрезерных операций, две операции сверления и одну операцию нарезания резьбы. Результат показан на рис 10.

Врезание инструмента в карманах осуществляется по спирали, либо по наклонной прямой, если система не сможет сформировать спираль с указанным пользователем радиусом в пределах заданной геометрии. В нашем случае диаметр инструмента и заданный радиус врезания позволяют выполнить вход в материал по спирали. Таким образом, операции для второго технологического перехода созданы.

Третий и четвертый переходы

Для третьего и четвертого технологических переходов создаем операции сверления и нарезания резьбы по боковым сторонам детали. Чтобы правильно выполнить последующую обработку, необходимо назначить план обработки. Нажимаем кнопку View Manager и и меняем направление обработки: в первом случае на Front, во втором – на Back. Затем, используя данные Solid Works Hole Wizard, формируем операции в том же порядке, что был описан и проиллюстрирован выше.

Верификация

Итак, система сгенерировала траектории, необходимые для обработки нашей детали. Теперь надо убедиться в их работоспособности. Выделим все операции и проверим с помощью верификатора все перемещения на возможные столкновения инструмента с заготовкой. Для этого нажимаем кнопку в в окне *Менеджера операций*, что открывает диалоговое окно *Verify*. Выбрав опцию *Stop on collision*, запускаем проверку и наблюдаем за процессом съёма материала. Результат показан на рис. 11.

Если в процессе проверки будут выявлены столкновения инструмента или держателя инструмента с заготовкой на ускоренной подаче, система сообщит об этом и отметит места столкновений красным цветом. В случае, если в настройках верификатора будет установлена опция сравнения с *STL*-файлом – *Compare to STL file* (для этого после запуска верификатора

Puc. 10

Puc. 11

МАШИНОСТРОЕНИЕ И СМЕЖНЫЕ ОТРАСЛИ

надо нажать кнопку (1), то система, завершив проверку, откроет окно сравнения результата обработки с исходной моделью детали. Пользователю нужно будет указать путь к файлу с исходной моделью (предварительно следует записать её в формате *STL*) и настроить палитру цветов для индикации зарезов или недостаточно обработанных зон. Нажатие после этого кнопки даст возможность наложить результат обработки, полученный в верификаторе, на исходную модель детали. Чтобы увидеть результаты сравнения, надо нажать кнопку (1). Система окрасит зоны с разным припуском в цвета, заданные пользователем.

В нашем случае (рис. 12) хорошо видно, что остался материал в зонах, окрашенных в темно-синий цвет. Таким образом, нам необходимо увеличить глубину нарезания резьбы в двух отверстиях.

После внесения изменений в параметры операции и пересчета траектории надо снова сравнить результат обработки с моделью изделия.

Постпроцессирование

Теперь нам осталось только отметить необходимые для каждого технологического перехода траектории обработки и запустить постпроцессор, нажав кнопку **G1** в окне *Менеджера операций*. Для генерации управляющих программ

Puc. 13

система использует постпроцессоры, имеющиеся в арсенале *Mastercam X3*.

Созданный в среде Solid Works файл с обработкой можно открыть в CAD/CAM-системе Mastercam X3 (рис. 13), просмотреть траектории, изменить параметры, пересчитать УП, создать при необходимости дополнительные операции и затем запомнить в формате Mastercam.

Подведем итоги

Весь процесс подготовки траекторий обработки, их проверки и генерации УП занял не более 15 минут. При использовании средств автоматического распознавания и обработки конструктивных элементов (FBM), основная экономия времени достигается за счет отсутствия необходимости создавать и затем назначать для расчета траекторий каркасную 2D-геометрию. Дополнительный эффект дает быстрая генерация последовательности необходимых операций. При этом у пользователя остается возможность изменить параметры любой из операций с тем, чтобы получить требуемый результат. Следует отметить, что описанным в этой статье способом можно спроектировать обработку для твердотельных моделей, которые были импортированы в Solid Works из других систем и не имеют дерева построений.

Вообще хочу отметить, что после первого знакомства с интегрированным в среду Solid Works приложением от CNC Software, создается стойкое впечатление, что даже мало знакомый с *CAM*-средствами пользователь сможет быстро освоить и использовать в работе предлагаемые разработчиком инструменты.

Подытоживая всё вышесказанное, можно сказать, что наличие на предприятии *CAD/CAM*-решения, включающего *Solid Works* и *Mastercam*, даст возможность эффективно планировать и использовать рабочее время специалистов при проектировании изделий и подготовке производства. Технологическую подготовку производства сложных изделий при этом можно вести параллельно их проектированию, задействуя ресурсы конструкторского и технологического отделов, равномерно распределять нагрузку на персонал и без проблем обмениваться информацией.

Первый релиз Mastercam for Solid Works будет содержать и все необходимые инструменты для проектирования 3D-фрезерной обработки на BCO-оборудовании сложных поверхностей штампов и пресс-форм. В следующем номере журнала мы планируем проиллюстрировать эти возможности на конкретном примере.

В дальнейших планах разработчика значится интеграция в *Mastercam for SolidWorks* средств для проектирования токарных, токарно-фрезерных и многоосевых операций обработки.